PRUNE: Preserving Proximity and Global Ranking for Network Embedding (Supplementary Material)

Yi-An Lai \(^\dagger\)†
National Taiwan University
b99202031@ntu.edu.tw

Chin-Chi Hsu \(^\ddagger\)
Academia Sinica
chinchi@iis.sinica.edu.tw

Wen-Hao Chen \(^\ast\)
National Taiwan University
b02902023@ntu.edu.tw

Mi-Yen Yeh \(^\dagger\)
Academia Sinica
miyen@iis.sinica.edu.tw

Shou-De Lin \(^\ast\)
National Taiwan University
sdlin@csie.ntu.edu.tw

1 Notation introduction

Table 1: Commonly used notations

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G = (V, E))</td>
<td>Input directed network (or graph)</td>
</tr>
<tr>
<td>(A \in {0,1}^{N \times N})</td>
<td>Adjacency matrix of network (G)</td>
</tr>
<tr>
<td>(V)</td>
<td>Set of nodes or vertices</td>
</tr>
<tr>
<td>(E = {(i,j) : a_{ij} = 1})</td>
<td>Set of links or edges</td>
</tr>
<tr>
<td>(N =</td>
<td>V</td>
</tr>
<tr>
<td>(M =</td>
<td>E</td>
</tr>
<tr>
<td>(P_i)</td>
<td>Set of direct predecessors of node (i)</td>
</tr>
<tr>
<td>(S_i)</td>
<td>Set of direct successors of node (i)</td>
</tr>
<tr>
<td>(m_i =</td>
<td>P_i</td>
</tr>
<tr>
<td>(n_i =</td>
<td>S_i</td>
</tr>
<tr>
<td>(z_i \in [0, \infty)^D)</td>
<td>Latent (D)-community distribution vector of node (i)</td>
</tr>
<tr>
<td>(W \in [0, \infty)^{D \times D})</td>
<td>Shared matrix of community interactions</td>
</tr>
<tr>
<td>(\pi_i \geq 0)</td>
<td>Global ranking score of node (i)</td>
</tr>
</tbody>
</table>

\(^\dagger \)Department of Computer Science and Information Engineering
\(^\ddagger \)Institute of Information Science
\(^\ast \)These authors contributed equally to this paper.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
2 Proof for the closed-form solution of binary classification

The objective function of our binary classification is shown below:
\[
\arg\max_{z,W} E_{(i,j) \in E} \left[\log \sigma(z_i^\top W z_j) \right] + \alpha E_{(i,j) \in E} \left[\log (1 - \sigma(z_i^\top W z_k)) \right] \\
= E_{i,j \in S_i} \left[\log \sigma(z_i^\top W z_j) \right] + \alpha E_{k \in V} \left[\log (1 - \sigma(z_i^\top W z_k)) \right] \\
= \sum_{i \in V} \sum_{j \in S_i} \sigma \left(p_s(i) p_t(j|i) \log \sigma(z_i^\top W z_j) \right) + \alpha \sum_{i \in V} \sum_{k \in V} \sigma \left(p_s(i) p_t(k) \log (1 - \sigma(z_i^\top W z_k)) \right) \\
= \sum_{i \in V} \sum_{j \in S_i} \frac{n_i}{M} \frac{1}{n_j} \log \sigma(z_i^\top W z_j) + \alpha \sum_{i \in V} \sum_{k \in V} \frac{n_k}{M} \frac{1}{M} \log (1 - \sigma(z_i^\top W z_k)).
\]

Given source node \(i \), one of linked target node \(j \in S_i \) enjoys a conditional distribution proportional to \(\frac{1}{n_j} \). Since \(S_i \subseteq V \) implies \(k \) including \(j \), for specific positive example \((i, j)\), we have:
\[
\arg\max_{z,W} L_{ij} = \frac{1}{M} \log \sigma(z_i^\top W z_j) + \alpha \frac{n_k}{M} \frac{1}{M} \log (1 - \sigma(z_i^\top W z_k)).
\]

Now let \(y_{ij} = z_i^\top W z_j \). We first derive the closed-form solution of zero first-order derivative over \(\sigma(y_{ij}) \):
\[
\frac{\partial L_{ij}}{\partial \sigma(y_{ij})} = \frac{1}{M} \frac{1}{M} \frac{1}{M} \frac{1}{M} \frac{1}{M} \frac{1}{M} \frac{1}{M} \frac{1}{M} \sigma(y_{ij}) = 0
\]
\[
\implies \sigma(y_{ij}) = \frac{\frac{1}{M} + \alpha \frac{n_k}{M} \frac{1}{M}}{M + \alpha n_i m_j} = \frac{M}{M + \alpha n_i m_j}.
\]

Next We obtain \(y_{ij} \) after calculations:
\[
\frac{1}{1 + e^{-y_{ij}}} = \frac{M}{M + \alpha n_i m_j} \\
\implies y_{ij} = \log \frac{M}{\alpha n_i m_j} = \log \frac{\frac{M}{M}}{\alpha \frac{n_i m_j}{M}} = \log \frac{\frac{M}{M}}{\alpha \frac{n_i m_j}{M}} = \log \frac{p_s(i|j)}{p_s(i|j)} - \log \alpha.
\]

3 Proof for matrix tri-factorization supporting the second-order proximity

The second-order proximity implies high similarity between two representation vectors \(z_i, z_j \) if nodes \(i, j \) have similar sets of direct predecessors or direct successors.

Consider the non-missing entries of the \(i \)-th and \(j \)-th column \(a_i^{PMI}, a_j^{PMI} \) in our derived PMI matrix \(A^{PMI} \). Since all the non-missing entries are in link set \(E \), the two columns represent the sets of direct predecessors of node \(i \) and \(j \) where the links are weighted by PMI. Based on our matrix tri-factorization \(Z^\top W Z \approx A^{PMI} \), we have:
\[
a_i^{PMI} \approx Z^\top W z_i, \\
\]
\[
a_j^{PMI} \approx Z^\top W z_j
\]
where \(z_i \) is the \(i \)-th column of representation matrix \(Z \). As the predecessor sets are similar \(a_i^{PMI} \approx a_j^{PMI} \), then their corresponding representation vector must be similar \(z_i \approx z_j \) due to the same weight matrix \(Z^\top W \). Similarly, when modeling the matrix tri-factorization for the rows in \(A^{PMI} \), we also obtain \(z_i \approx z_j \) if nodes \(i, j \) have similar successor sets.
4 Proof for the expectation of community interactions

Let $W \in [0, \infty)^{D \times D}$ be the community interaction matrix where each entry w_{cd} denotes the expected number of interactions from community c to d. $c = d$ implies the number of internal interactions within a community. We assume that the existence of link (i, j) is determined by the expected value of W with community distributions of i and j:

$$E_{(i,j)}[W] = \sum_{c=1}^{D} \sum_{d=1}^{D} \Pr(i \in C_c, j \in C_d) w_{cd}$$

where C_c is the set of nodes in community c. Let z_i be an unnormalized distribution vector where each dimension $0 \leq z_{ic} \propto \Pr(i \in C_c)$. Under the independence assumption between $\Pr(i \in C_c)$ and $\Pr(j \in C_d)$, we have:

$$\sum_{c=1}^{D} \sum_{d=1}^{D} \Pr(i \in C_c, j \in C_d) w_{cd} = \sum_{c=1}^{D} \sum_{d=1}^{D} \Pr(i \in C_c) \Pr(j \in C_d) w_{cd}$$

$$\propto \sum_{c=1}^{D} \sum_{d=1}^{D} z_{ic} z_{jd} w_{cd}$$

$$= z_i^\top W z_j.$$

5 Proof for community interactions following Poisson distribution

Based on the proof in the previous section, for specific link (i, j), the expected number of interactions from community c to d is

$$\Pr(i \in C_c) \Pr(j \in C_d) w_{cd} \propto z_{ic} z_{jd} w_{cd}.$$

Here we model discrete random variable $X_{cd}^{(i,j)}$ as the number of interactions from community c to d for link (i, j), following Poisson distribution $X_{cd}^{(i,j)} \sim \mathcal{P}(\mu = z_{ic} z_{jd} w_{cd})$. Using the properties of Poisson distribution, the overall number of interactions among community pairs is

$$X^{(i,j)} = \sum_{c=1}^{D} \sum_{d=1}^{D} X_{cd}^{(i,j)} \sim \mathcal{P} \left(\mu = \sum_{c=1}^{D} \sum_{d=1}^{D} z_{ic} z_{jd} w_{cd} = z_i^\top W z_j \right).$$

Assume that node i and j belong to at least one community. Link (i, j) exists due to at least one interaction between the communities that i and j belong to, which is

$$\mathcal{P}(X^{(i,j)} > 0) = 1 - \mathcal{P}(X^{(i,j)} = 0) = 1 - \exp(-z_i^\top W z_j).$$
6 Proof for PageRank upper-bound objective function

Let \(P_j \) be the set of direct predecessors of node \(j \), and \(n_i \) be the out-degree of node \(i \). Then we have:

\[
\arg \min_\pi \sum_{j \in V} \left(\sum_{i \in P_j} \frac{\pi_i}{n_i} - \pi_j \right)^2 = \sum_{j \in V} \left(\left(\sum_{i \in P_j} \frac{\pi_i}{n_i} \right)^2 - 2 \pi_j \sum_{i \in P_j} \frac{\pi_i}{n_i} + \pi_j^2 \right) \\
\leq \sum_{j \in V} \left(\sum_{i \in P_j} 1^2 \right) \left(\sum_{i \in P_j} \left(\frac{\pi_i}{n_i} \right)^2 \right) - 2 \pi_j \sum_{i \in P_j} \frac{\pi_i}{n_i} + \pi_j^2 \\
= \sum_{(i,j) \in E} \left(\frac{m_j}{n_i} - \frac{\pi_j}{m_j} \right)^2.
\]

Since \(\left(\sum_{i \in P_j} 1^2 \right) \left(\sum_{i \in P_j} \left(\frac{\pi_i}{n_i} \right)^2 \right) \geq 0 \), we constrain \(\pi_i \geq 0 \) for all node \(i \) to make the upper bound tighter.

7 Proof for PageRank sufficient condition

For each node \(j \in V \), let \(P_j \) be the set of direct predecessors of node \(j \). We denote node \(i \in P_j \). Then for each node \(j \), we show a sufficient condition:

\[
\frac{\pi_i}{n_i} = \frac{\pi_j}{m_j} \quad \forall \; i \in P_j, \; j \in V
\]

where \(m_j = |P_j| \), \(n_i \) is respectively the in-degree of node \(j \) and the out-degree of node \(i \). Now we calculate the sum of the left-hand-side for all the direct predecessors \(i \) of each node \(j \):

\[
\sum_{i \in P_j} \frac{\pi_i}{n_i} = \sum_{i \in P_j} \frac{\pi_j}{m_j} \\
= \frac{1}{m_j} \sum_{i \in P_j} \pi_j \\
= \frac{1}{m_j} m_j \pi_j \\
= \pi_j \quad \forall \; j \in V.
\]

The equation is just the PageRank assumption: \(\sum_{i \in P_j} \frac{\pi_i}{n_i} = \pi_j \forall \; j \in V \) (here we omit the damping factor).