Models for Generating Social Networks

Prof. Shou-de Lin

CSIE/GINM, NTU

sdlin@csie.ntu.edu.tw
Administration Issues

• Homework (one each month):
 – You probably need to spend 20 hours or so on each homework.
 – HW 1.1 will be out today, 1.2 will be out next week. They will be due 3 weeks from now (10/13).
 – Graduate students: individual submission
 – Undergraduate students: can form a two-person team

• Final Project Group:
 – 3 people’s team is preferred
 – 2 persons’ team: please post on Ceiba to look for another member
 – 4 persons’ team: please break into 2*2 and follow the above rule
 – 1 person team: not allowed (come on, this is a SOCIAL network course. Don’t be so anti-social).
Reference Books for this Course

• Hanneman, Robert A. and Mark Riddle, Introduction to social network methods, (Online Text Book), Riverside, CA: University of California, Riverside, 2005.
Libraries for Network/Graph Programming

• JUNG (Java Universal Network/Graph Framework)
 – http://jung.sourceforge.net/
 – Rich intuitive sample codes in the examples

• The igraph library (C, R language)
 – http://igraph.sourceforge.net/
 – The most active and complete library using C for graphs
 – Rich examples and many graph theory algorithms

• The Boost Graph Library (C++)
 – Integrate generic programming standard template library

• LibSNA (Python)
 – http://www.libsna.org/
 – Provide simple data structure for graph manipulation

• Matlab
 – grTheory - Graph Theory Toolbox
 http://www.mathworks.com/matlabcentral/fileexchange/4266
 – Graph package
 http://www.mathworks.com/matlabcentral/fileexchange/12648
Review of last week: the property of natural social networks

1. There are generally two different definitions for network Diameter: (1) The largest shortest path. (2) The average length of all-pair shortest path (this lecture)
 – the average path lengths of many real-world social networks are small

2. High clustering coefficient (CC): the neighbors of a node are tightly connected.
 – To compute CC, we can simply use: \(\Sigma_i(\# \text{ of existing links between the neighbors } n_i / \# \text{ of possible links between neighbors of } n_i) \)

3. Degree distributions follow Power Law.

4. Contains patterns, motifs, groups, etc

The question to be answered in today’s class: How were social networks with the above characteristics formed? Can we model their generation process?
What is a Network Model?

• Informally, a network model is a **process** (randomized or deterministic) for generating a graph.

• Some people use “**generation model of networks**”.
Outline

• Random Graph
 – Erdos-Renyi Model
 – Configuration Model

• Scale-free Network
 – Power-law distribution
 – Barabasi-Albert Model

• Small-world Network
 – Watts-Strogatz Model

• Comparison of Network Models
Random Graph

For more details, please refer to:

Erdos-Renyi Random Graphs

(Or called ER model)

What does a “typical” graph with \(n \) vertices and \(m \) edges look like?

Paul Erdös (1913-1996)
Erdos-Renyi Random Graphs

• Consider a graph with \(n \) vertices
• Let \(E \) denote the total number of edge possible

\[
E = \binom{N}{2} = \frac{N!}{2!(N-2)!} = \frac{N(N-1)}{2}
\]

– (If directed, it would be multiply by 2)
Two Formulations of ER model

- \(G(n,p) \)
 - The ensemble of graphs constructed by putting in edges with probability \(p \), independent of one another (\(1-p \) for absent edges)
 - Let \(G(n,p) \) be a random realization of \(G(n,p) \)
 - This is also called Poisson random graph

- \(G(n,m) \)
 - Randomly choose a graph from a set of all possible graphs with \(n \) nodes and \(m \) edges
 - Let \(G(n,m) \) be a random realization of \(G(n,m) \)

- Are these two models the same or different?

Note: the generation model produces a set of networks that follow certain distribution, however, it doesn’t mean in real implementation, you need to follow the same process to produce same type of networks.
Degree Distribution of $G(n,p)$

- Consider $G(n,p)$ for a **fixed** p and n (which is large)
- The absence or presence of an edge is **independent for all edges**
 - $\text{Prob}(\text{node } i \text{ connects to all other } n \text{ nodes}) = p^n$
 - $\text{Prob}(\text{node } i \text{ is isolated}) = (1-p)^n$
 - $\text{Prob}(\text{node } i \text{ has degree } k)$ follows a **binomial distribution**

$$p_k = \binom{n}{k} p^k (1 - p)^{n-k}$$
$G(n,p)$ is a Poisson random graph

- Define $z = np$ = average total degree

\[
\lim_{n \to \infty} p_k = \lim_{n \to \infty} \binom{n}{k} p^k (1 - p)^{n-k}
\]

\[
= \lim_{n \to \infty} \frac{n!}{(n-k)!k!} \left(\frac{z}{n} \right)^k \left(1 - \frac{z}{n} \right)^{n-k}
\]

\[
= z^k e^{-z} / k!
\]

$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$

2009/9/29
Size of the Largest Component vs. p

- Let $C_{\text{max}}(p)$ be the number of nodes of the largest connected component of $G(n,p)$
- Apparently, $C_{\text{max}}(p)$ depends on p
 1. when p is small, $C_{\text{max}}(p)$ is small \Rightarrow average path length $= \text{infinite}$
 2. What happens when p grows from 0 to 1?
For small p, few edges on the graph. Almost all vertices disconnected. The component size is small (no larger than $O(\log n)$, regardless of p).
Keep increasing p ...
Keep increasing p ...
Estimating the Size of the Largest Giant Component (LC)

- Let u be the fraction of vertices that do NOT belong to LC
 - Choosing a vertex uniformly at random, u is the probability that this vertex doesn’t belong to LC
- If a chosen vertex has degree k, then the probability that it does not belong to LC is equivalent to the probability that ”all its neighbors do not belong to LC”, which is u^k
- Since a chosen vertex can have degree from 0 to infinite, we can say
 \[u = \sum_{k=0}^{\infty} p_k u^k = e^{-z} \sum_{k=0}^{\infty} \frac{z^k}{k!} u^k = e^{-z-u} \]
 Note that $e^x = \sum (x^k/k!)$
- The fraction S of the graph occupied by a giant component is
 \[S = 1 - u = 1 - e^{-zs} \]
- S does not have an analytical solution (only numerical solution).
Evolution of a random graph

\begin{figure}
\centering
\includegraphics[width=\textwidth]{graph.png}
\caption{Evolution of a random graph for non-GCC vertices and giant component size.}
\end{figure}

mean component size $\langle s \rangle$

mean degree z

2009/9
P affects the Size of the Largest Component

- Erdos and Renyi proved that
 - $p < 1/n$: only **small** disconnected components
 - With probability tend to one as N tens to infinity, the graph has no component of size greater than $O(\ln N)$, and no component has more than one cycle.
 - $p = 1/n$ (**phase transition**): almost surely the largest component has size $O(N^{2/3})$
 - $p > 1/n$: the graph has a component of $O(N)$, with a number $O(N)$ of cycles, and no other component has more than $O(\ln N)$ nodes and more than one cycle
 - When $p > \ln N/N$, then almost surely the graph is fully connected

Emergence of the Giant Component

- At \(z=1 \) (or \(pn = 1 \))
 - **Suddenly** the largest component contains a finite fraction \(F \) of the total number of vertices, \(C_{max} = FN \)
Giant Component in the Real World

- Many real-world networks “gain critical mass”
- E.g. WWW

Average Path Length of $G(n,p)$ when $p \gt \ln N/N$

- **When** $p > \ln N/N$, the graph is almost totally connected, when the average # of neighbors is $z = (n - 1)p \approx np$
- **Assuming the average path length is** l, then $z^l \approx n$,

$$l \approx \log(n) / \log(z)$$

In many real-world **small-world** social networks, $l \approx O(\log(n))$
The Clustering Coefficient for G(n,p)

- CC stands for how likely the two neighbors of a node is connected to each other.
- CC=p for G(n,p) since whether the two neighbors are connected is independent of whether they belong to the neighbors of a node.
- p goes to zero when n becomes large and z=1
Clustering Coefficient for Different Networks

<table>
<thead>
<tr>
<th>Network</th>
<th>n</th>
<th>z</th>
<th>Measured Clustering Coefficient C</th>
<th>Random Graph Clustering Coefficient C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet (autonomous systems)a</td>
<td>6374</td>
<td>3.8</td>
<td>0.24</td>
<td>0.00060</td>
</tr>
<tr>
<td>World-Wide Web (sites)b</td>
<td>153,127</td>
<td>35.2</td>
<td>0.11</td>
<td>0.00023</td>
</tr>
<tr>
<td>Power gridc</td>
<td>4,941</td>
<td>2.7</td>
<td>0.080</td>
<td>0.00054</td>
</tr>
<tr>
<td>Biology collaborationsd</td>
<td>1,520,251</td>
<td>15.5</td>
<td>0.081</td>
<td>0.000010</td>
</tr>
<tr>
<td>Mathematics collaborationse</td>
<td>253,339</td>
<td>3.9</td>
<td>0.15</td>
<td>0.000015</td>
</tr>
<tr>
<td>Film actor collaborationsf</td>
<td>449,913</td>
<td>113.4</td>
<td>0.20</td>
<td>0.00025</td>
</tr>
<tr>
<td>Company directorsf</td>
<td>7,673</td>
<td>14.4</td>
<td>0.59</td>
<td>0.0019</td>
</tr>
<tr>
<td>Word co-occurrenceg</td>
<td>460,902</td>
<td>70.1</td>
<td>0.44</td>
<td>0.00015</td>
</tr>
<tr>
<td>Neural networkc</td>
<td>282</td>
<td>14.0</td>
<td>0.28</td>
<td>0.049</td>
</tr>
<tr>
<td>Metabolic networkh</td>
<td>315</td>
<td>28.3</td>
<td>0.59</td>
<td>0.090</td>
</tr>
<tr>
<td>Food webi</td>
<td>134</td>
<td>8.7</td>
<td>0.22</td>
<td>0.065</td>
</tr>
</tbody>
</table>
Properties of E-R Random Graphs

1. **Phase transition** in connectivity at average node degree, $z = 1$ (i.e., $p=1/n$)

2. Poisson degree distribution, $p_k = z^k e^{-z}/k!$

3. Diameter, $d \sim \log n$

4. **Clustering coefficient**: none ($C = p$)
Can $G(n,p)$ Model Real-world Networks?

1. **Phase transition**: **YES**!
 - The emergence of a giant component

2. **Poisson degree distribution**: **NO**!
 - Most networks are power-law distribution

3. **Small-world diameter**: **YES**!
 - It occurs in social, technological, knowledge, and biological networks

4. **High Clustering coefficient**: **NO**!
Outline

• Random Graph
 – Erdos-Renyi Model
 – Configuration Model

• Scale-free Network
 – Power-law distribution
 – Barabasi-Albert Model

• Small-world Network
 – Watts-Strogatz Model

• Comparison of Network Models
Configuration Model

More details please see
Configuration Model

• In configuration model, we are not explicitly specify how many links are there as $G(n,m)$ nor the fixed probability as $G(n,p)$

• Instead, we specify a degree distribution p_k, such that p_k is the fraction of vertices in the network having degree k.

• How to generate a network that satisfies this distribution?
Phrase Transition in a Configuration Model

- Define q_k as the **excess degree distribution**, which is the probability that in the end of a randomly picked edge connects a node with degree $k + 1$. $q_k = (k+1)p_{k+1}/\sum xp_x$

- The average number of vertices two steps away from a given vertex is $\sum kq_k$, which is
 \[\sum_{k=0}^{\infty} kq_k = \sum_{k=0}^{\infty} \frac{k(k+1)p_{k+1}}{\sum x p_x} = \frac{\sum (k-1)kp_k}{\sum x p_x} = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{z_2}{z_1} \]

- Multiplying by the mean degree $z_1 = \langle k \rangle$, we can obtain the mean number of second neighbors of a vertex is $z_2 = \langle k^2 \rangle - \langle k \rangle$.

- Note that z_2 for Poisson random graph is $\langle k^2 \rangle$.

- Similarly, the mean m-step neighbors
 \[z_m = (z_2/z_1)^m z_{m-1} = [z_2/z_1]^{m-1} z_1 \]

- If $z_2 > z_1$, then the graph will diverge exponentially.

- The boundary for phrase transition is $z_2 - z_1$, or equivalently $\sum_k k(k-2)p_k$
 - if larger than zero than there exists a large component
Component Size for Configuration Models

• Assuming $z_2 > z_1$, then the giant component S exists.

• Since the mean m-step neighbors $z_m = [z_2/z_1]^{m-1} z_1$ grows exponentially with m, therefore we can roughly assume the average path length $\ell^m = n = z_m$
 $\Rightarrow \ell = \ln(n/z_1)/\ln(z_2/z_1) + 1$

• Recall for ER model, $\ell = \ln(n)/\ln(z)$

• The mean component size below the phrase transition in the region where there is no giant component is
 $1 + z_1(1 + (z_2/z_1) + (z_2/z_1)^2 + ...) = 1 + z_1^2/(z_1 - z_2)$

• Define u to be the probability that a randomly chosen edge leads to a vertex that is not part of the giant component.

• $u = \sum_{k=0}^{\infty} q_k u^k \quad S = 1 - \sum_{k=0}^{\infty} p_k u^k$
Generating the Configuration Model
(Bender-Canfield model, 1978)

• Given: a degree sequence \([d_1, d_2, \ldots, d_n]\)

• Algorithm
 1. Create \(d_i\) copies of node \(i\)
 • Each degree’s node set is called “stubs” or “spokes”
 2. Take a random pairing of the copies
 • With equal probability
 • Allow self-loops and multiple edges

• Output: the ensemble of graphs so produced

Note: this method is not necessary the most efficient one
Configuration Model (cont.)

- Suppose the degree sequence [4, 3, 2, 1]

1. Create **multiple copies** of the nodes according to degree

2. Pair the nodes uniformly at random

- Generate the resulting graph
Clustering Coefficient for Configuration Model

- In configuration model, the CC highly depends on the degree distribution → therefore we cannot say too much about it without knowing the distribution.
- We can try to calculate the average CC for Bender-Canfield method.
- The “average degree minus 1” of the neighbor nodes is \(\Sigma kq_k \).
- CC: probability one neighbor node is connecting to another neighbor node is roughly
 \[
 \left(\Sigma kq_k \right)^2 / nz_1 = \left(\frac{z_2}{z_1} \right)^2 / nz_1 = \left(\frac{z}{n} \right) * \left(\frac{z_2}{z_1} \right)^2
 \]
- That says, if \(n \) is very large, CC tends to be zero 😞 (but if \(\frac{z_2}{z_1} \) is large, then C can be non-negligible.)
Outline

• Random Graph
 – Erdos-Renyi Model
 – Configuration Model

• Scale-free Network
 – Power-law distribution
 – Barabasi-Albert Model

• Small-world Network
 – Watts-Strogatz Model

• Comparison of Network Models
Power Law Distribution

For more details, please refer to:

Normal (i.e., Gaussian) distribution of human heights

Average value close to most typical

Distribution close to symmetric around average value
Power-law Distribution

- High skew (asymmetry)
- Nearly straight line on a log-log plot
Heavy Tailed Distribution?

• Right skew
 – **Normal distribution** (not heavy tailed)
 • e.g., human height
 – **Zipf’s or power-law distribution** (heavy tailed)
 • e.g., city population sizes: very few cities with large size (e.g. NYC 8 million), but many small towns (e.g. size≈10^4)

• High ratio of max to min
 – E.g., Human height
 • 272cm to 57cm, ratio=4.8
 – E.g., City size
 • NYC 8 million to smallest town 52, ratio=150,000
Power Law is Ubiquitous!

Moby Dick (白鯨記) scientific papers 1981-1997 AOL users visiting sites 1997

(word frequency) (citations) (web hits)

10^0 10^2 10^4

10^4

10^2

10^0

bestsellers 1895-1965 AT&T customers on 1 day California 1910-1992

books sold telephone calls received earthquake magnitude

10^6 10^1 10^7

10^0 10^2 10^4 10^6

10^3 10^2

10^0

2 3 4 5 6 7

2009/9/29 SNA09, Modeling, Prof. Sd Lin
More Power laws...

Moon

Solar flares

wars (1816-1980)

(g)

(h)

(i)

\[\text{crater diameter in km} \]

\[\text{peak intensity} \]

\[\text{intensity} \]

\[\text{net worth in US dollars} \]

\[\text{name frequency} \]

\[\text{population of city} \]

richest individuals 2003

US family names 1990

US cities 2003

\(2009/9/29\)
Power Law Distribution

\[p(x) = C x^{-\alpha} \]

Normalization constant

(probabilities over all \(x \) must sum to 1)

- Straight line on a log-log plot

\[\ln(p(x)) = c - \alpha \ln(x) \]

- powers of a number will be uniformly spaced

\[2^0=1, 2^1=2, 2^2=4, 2^3=8, 2^4=16, 2^5=32, 2^6=64, \ldots \]
Fitting Power-law Distribution

• Most common and not very accurate method
 – Bin the different values of x and create a frequency histogram

\[\ln(\text{# of times } x \text{ occurred}) \]

\[x \text{ stands for various quantities} \]

$\ln(x)$ is the natural logarithm of x, but any other base of the logarithm will give the same exponent of a since

\[\log_{10}(x) = \frac{\ln(x)}{\ln(10)} \]
Log-log Scale Plot of Straight Binning

• Same bins, but plotted on a log-log scale

- Tens of thousands of observations for $x < 10$

- Noise in the tail
 Only 0, 1 or 2 observations for $x > 500$
Log-log Scale Plot of Straight Binning (cont.)

- Fitting a straight line to it via least squares regression will overfit the low value ones.

Few bins vs. much more bins.
Solution-1: Logarithmic Binning

- **Normalization**
 - Bin data into *exponentially wider bins*
 - $1, 2, 4, 8, 16, 32, \ldots$

Disadvantage: lose information
Solution-2: Cumulative Binning

• No loss of information
• Take advantage of cumulative distribution
 – How many observations are at least x? $P_{cd}(x) = \int_{x}^{\infty} x^{-\alpha} \, dx$
 – The cumulative probability of a power-law distribution is also power-law but with an exponent $\alpha - 1$

$$P_{cd}(x) = \int_{x}^{\infty} x^{-\alpha} \, dx = \frac{c}{1 - \alpha} x^{-(\alpha - 1)}$$
Fitting via Regression to the Cumulative Distribution

$\alpha - 1 = 1.43$ fit
Where to Start Fitting?

- Some data exhibit a power law only in the tail
 - Binning and cumulative distribution only fit tails
- Select an x_{min} where the power-law could start
 - E.g., distribution of paper citations: $x_{min} > 100$
Normalize C of Power Law

\[p(x) = Cx^{-\alpha} \quad (\alpha > 0) \]

Probabilities over all \(x \) must sum to 1

- There must be some lowest value \(x_{\text{min}} \) at which the power law is obeyed. We start there.

\[
1 = \int_{x_{\text{min}}}^{\infty} p(x) \, dx = C \int_{x_{\text{min}}}^{\infty} x^{-\alpha} \, dx = \frac{C}{1 - \alpha} \left[x^{-\alpha+1} \right]_{x_{\text{min}}}^{\infty}
\]

\[
C = (\alpha - 1)x_{\text{min}}^{\alpha-1} \quad (\alpha > 1)
\]

\[
p(x) = \frac{\alpha - 1}{x_{\text{min}}} \left(\frac{x}{x_{\text{min}}} \right)^{-\alpha}
\]
Solution-3: Maximum Likelihood Fitting

\[p(x) = C x^{-\alpha} = \frac{\alpha - 1}{x_{\text{min}}} \left(\frac{x}{x_{\text{min}}} \right)^{-\alpha} \]

- Given a dataset containing \(n \) observations \(x_i \geq x_{\text{min}} \), use the **maximum likelihood estimator** (MLE) to find \(\alpha \) for the power-law model that is most likely to have generated the given data

\[P(x|\alpha) = \prod_{i=1}^{n} p(x_i) = \prod_{i=1}^{n} \frac{\alpha - 1}{x_{\text{min}}} \left(\frac{x_i}{x_{\text{min}}} \right)^{-\alpha} \]

- The **likelihood** of the data given the model
 - **Maximize** this function!!
Maximum Likelihood Fitting (cont.)

- Commonly the logarithmic L of the likelihood is used for parameter estimation

$$
L = \ln p(x | \alpha) = \ln \prod_{i=1}^{n} \frac{\alpha - 1}{x_{\text{min}}} \left(\frac{x_i}{x_{\text{min}}} \right)^{-\alpha}
$$

$$
= \sum_{i=1}^{n} \left[\ln(\alpha - 1) - \ln x_{\text{min}} - \alpha \ln \frac{x_i}{x_{\text{min}}} \right]
$$

$$
= n \ln(\alpha - 1) - n \ln x_{\text{min}} - \alpha \sum_{i=1}^{n} \ln \frac{x_i}{x_{\text{min}}}
$$

Setting $\partial L / \partial \alpha = 0$ and solving for α:

$$
\hat{\alpha} - 1 + n \left[\sum_{i=1}^{n} \ln \frac{x_i}{x_{\text{min}}} \right]^{-1}
$$
Some Exponents for Real-world Data [Newman’05]

<table>
<thead>
<tr>
<th>quantity</th>
<th>minimum x_{min}</th>
<th>exponent α</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) frequency of use of words</td>
<td>1</td>
<td>2.20</td>
</tr>
<tr>
<td>(b) number of citations to papers</td>
<td>100</td>
<td>3.04</td>
</tr>
<tr>
<td>(c) number of hits on web sites</td>
<td>1</td>
<td>2.40</td>
</tr>
<tr>
<td>(d) copies of books sold in the US</td>
<td>2,000,000</td>
<td>3.51</td>
</tr>
<tr>
<td>(e) telephone calls received</td>
<td>10</td>
<td>2.22</td>
</tr>
<tr>
<td>(f) magnitude of earthquakes</td>
<td>3.8</td>
<td>3.04</td>
</tr>
<tr>
<td>(g) diameter of moon craters</td>
<td>0.01</td>
<td>3.14</td>
</tr>
<tr>
<td>(h) intensity of solar flares</td>
<td>200</td>
<td>1.83</td>
</tr>
<tr>
<td>(i) intensity of wars</td>
<td>3</td>
<td>1.80</td>
</tr>
<tr>
<td>(j) net worth of Americans</td>
<td>$600m$</td>
<td>2.09</td>
</tr>
<tr>
<td>(k) frequency of family names</td>
<td>10,000</td>
<td>1.94</td>
</tr>
<tr>
<td>(l) population of US cities</td>
<td>40,000</td>
<td>2.30</td>
</tr>
</tbody>
</table>
Exponents for Real-world Network [Newman’03]

<table>
<thead>
<tr>
<th>network</th>
<th>type</th>
<th>n</th>
<th>m</th>
<th>z</th>
<th>ℓ</th>
<th>α</th>
<th>(C^{(1)})</th>
<th>(C^{(2)})</th>
<th>r</th>
<th>Ref(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>social</td>
<td></td>
</tr>
<tr>
<td>film actors</td>
<td>undirected</td>
<td>449913</td>
<td>25516482</td>
<td>113.43</td>
<td>3.48</td>
<td>2.3</td>
<td>0.20</td>
<td>0.78</td>
<td>0.208</td>
<td>20, 416</td>
</tr>
<tr>
<td>company directors</td>
<td>undirected</td>
<td>7673</td>
<td>55392</td>
<td>14.44</td>
<td>4.60</td>
<td>–</td>
<td>0.59</td>
<td>0.88</td>
<td>0.276</td>
<td>105, 323</td>
</tr>
<tr>
<td>math coauthorship</td>
<td>undirected</td>
<td>253339</td>
<td>496480</td>
<td>3.92</td>
<td>7.57</td>
<td>–</td>
<td>0.15</td>
<td>0.34</td>
<td>0.120</td>
<td>107, 182</td>
</tr>
<tr>
<td>physics coauthorship</td>
<td>undirected</td>
<td>52909</td>
<td>245300</td>
<td>9.27</td>
<td>6.19</td>
<td>–</td>
<td>0.45</td>
<td>0.56</td>
<td>0.363</td>
<td>311, 313</td>
</tr>
<tr>
<td>biology coauthorship</td>
<td>undirected</td>
<td>1520251</td>
<td>11803064</td>
<td>15.53</td>
<td>4.92</td>
<td>–</td>
<td>0.088</td>
<td>0.60</td>
<td>0.127</td>
<td>311, 313</td>
</tr>
<tr>
<td>telephone call graph</td>
<td>undirected</td>
<td>47000000</td>
<td>80000000</td>
<td>3.16</td>
<td>–</td>
<td>2.1</td>
<td>0.16</td>
<td>0.15</td>
<td>–</td>
<td>8, 9</td>
</tr>
<tr>
<td>email messages</td>
<td>directed</td>
<td>59912</td>
<td>86300</td>
<td>1.44</td>
<td>4.95</td>
<td>1.5/2.0</td>
<td>0.17</td>
<td>0.13</td>
<td>0.092</td>
<td>321</td>
</tr>
<tr>
<td>email address books</td>
<td>directed</td>
<td>16881</td>
<td>57029</td>
<td>3.38</td>
<td>5.22</td>
<td>–</td>
<td>0.005</td>
<td>0.001</td>
<td>–</td>
<td>45</td>
</tr>
<tr>
<td>student relationships</td>
<td>undirected</td>
<td>573</td>
<td>477</td>
<td>1.66</td>
<td>16.01</td>
<td>–</td>
<td>–</td>
<td>0.029</td>
<td>–</td>
<td>45</td>
</tr>
<tr>
<td>sexual contacts</td>
<td>undirected</td>
<td>2810</td>
<td>–</td>
<td></td>
<td></td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>information</td>
<td></td>
</tr>
<tr>
<td>WWW nd.edu</td>
<td>directed</td>
<td>269504</td>
<td>1497135</td>
<td>5.55</td>
<td>11.27</td>
<td>2.1/2.4</td>
<td>0.11</td>
<td>0.29</td>
<td>–0.067</td>
<td>14, 34</td>
</tr>
<tr>
<td>WWW Altavista</td>
<td>directed</td>
<td>203549046</td>
<td>2130000000</td>
<td>10.46</td>
<td>16.18</td>
<td>2.1/2.7</td>
<td>0.74</td>
<td>0.15</td>
<td>0.157</td>
<td>244</td>
</tr>
<tr>
<td>citation network</td>
<td>directed</td>
<td>783339</td>
<td>6716198</td>
<td>8.57</td>
<td>3.0/–</td>
<td>–</td>
<td>0.13</td>
<td>0.15</td>
<td>0.157</td>
<td>351</td>
</tr>
<tr>
<td>Roget’s Thesaurus</td>
<td>directed</td>
<td>1022</td>
<td>5103</td>
<td>4.99</td>
<td>4.87</td>
<td>–</td>
<td>0.13</td>
<td>0.15</td>
<td>0.157</td>
<td>244</td>
</tr>
<tr>
<td>word co-occurrence</td>
<td>undirected</td>
<td>460902</td>
<td>17000000</td>
<td>70.13</td>
<td>2.7</td>
<td>–</td>
<td>0.44</td>
<td>0.119</td>
<td>0.157</td>
<td>119, 157</td>
</tr>
<tr>
<td>technological</td>
<td></td>
</tr>
<tr>
<td>Internet</td>
<td>undirected</td>
<td>10607</td>
<td>31992</td>
<td>5.98</td>
<td>3.31</td>
<td>2.5</td>
<td>0.035</td>
<td>0.39</td>
<td>–0.180</td>
<td>86, 148</td>
</tr>
<tr>
<td>power grid</td>
<td>undirected</td>
<td>4941</td>
<td>6594</td>
<td>2.67</td>
<td>18.99</td>
<td>–</td>
<td>0.10</td>
<td>0.080</td>
<td>–0.003</td>
<td>416</td>
</tr>
<tr>
<td>train routes</td>
<td>undirected</td>
<td>587</td>
<td>19603</td>
<td>66.79</td>
<td>2.16</td>
<td>–</td>
<td>0.69</td>
<td>–0.033</td>
<td>–0.033</td>
<td>366</td>
</tr>
<tr>
<td>software packages</td>
<td>directed</td>
<td>1439</td>
<td>1723</td>
<td>1.20</td>
<td>2.42</td>
<td>1.6/1.4</td>
<td>0.070</td>
<td>0.082</td>
<td>–0.016</td>
<td>318</td>
</tr>
<tr>
<td>software classes</td>
<td>directed</td>
<td>1377</td>
<td>2213</td>
<td>1.61</td>
<td>1.51</td>
<td>–</td>
<td>0.033</td>
<td>0.012</td>
<td>–0.119</td>
<td>395</td>
</tr>
<tr>
<td>electronic circuits</td>
<td>undirected</td>
<td>24097</td>
<td>53248</td>
<td>4.34</td>
<td>11.05</td>
<td>3.0</td>
<td>0.010</td>
<td>0.030</td>
<td>–0.154</td>
<td>155</td>
</tr>
<tr>
<td>peer-to-peer network</td>
<td>undirected</td>
<td>880</td>
<td>1296</td>
<td>1.47</td>
<td>4.28</td>
<td>2.1</td>
<td>0.012</td>
<td>0.011</td>
<td>–0.366</td>
<td>6, 354</td>
</tr>
<tr>
<td>biological</td>
<td></td>
</tr>
<tr>
<td>metabolic network</td>
<td>undirected</td>
<td>765</td>
<td>3686</td>
<td>9.64</td>
<td>2.56</td>
<td>2.2</td>
<td>0.000</td>
<td>0.67</td>
<td>–0.240</td>
<td>214</td>
</tr>
<tr>
<td>protein interactions</td>
<td>undirected</td>
<td>2115</td>
<td>2240</td>
<td>2.12</td>
<td>6.80</td>
<td>2.4</td>
<td>0.072</td>
<td>0.071</td>
<td>–0.156</td>
<td>212</td>
</tr>
<tr>
<td>marine food web</td>
<td>directed</td>
<td>135</td>
<td>598</td>
<td>4.43</td>
<td>2.05</td>
<td>–</td>
<td>0.16</td>
<td>0.23</td>
<td>–0.263</td>
<td>204</td>
</tr>
<tr>
<td>freshwater food web</td>
<td>directed</td>
<td>92</td>
<td>997</td>
<td>10.84</td>
<td>1.90</td>
<td>–</td>
<td>0.20</td>
<td>0.087</td>
<td>–0.326</td>
<td>272</td>
</tr>
<tr>
<td>neural network</td>
<td>directed</td>
<td>307</td>
<td>2399</td>
<td>7.66</td>
<td>3.97</td>
<td>–</td>
<td>0.18</td>
<td>0.28</td>
<td>–0.226</td>
<td>416, 421</td>
</tr>
</tbody>
</table>
80/20 Rule

- The fraction W of the wealth in the hands of the richest P of the population is given by
 \[W = P^{(\alpha-2)/(\alpha-1)} \]
 - E.g., US wealth $\alpha = 2.1$

- The richest 20% holds 86% of the wealth
Distribution that do **NOT** follow power law

- **Ex-(a):** The abundance of North American bird species
 - Though it spans over five order of magnitude
 - It follows a **log-normally distribution**
 \[f_X(x; \mu, \sigma) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\ln x-\mu)^2}{2\sigma^2}}, \quad x > 0 \]

- **Ex-(b):** The number of entries in people’s email address books
 - Though it spans about three orders of magnitude
 - It follows a **stretched exponential**
 \[p(x) = e^{-ax^b} \]

- **Ex-(c):** The distribution of the sizes of forest fires
 - Though it spans six orders of magnitude
 - It follows a **power law with an exponential cutoff**
 \[p(x) = Cx^{-\alpha}e^{-\lambda x} \]
Outline

• Random Graph
 – Erdos-Renyi Model
 – Configuration Model

• Scale-free Network
 – Power-law distribution
 – Barabasi-Albert Model

• Small-world Network
 – Watts-Strogatz Model

• Comparison of Network Models
Scale-free Network & Barabasi-Albert Model

For more details, please refer to:

Scale-Free Network

- A network whose **degree distribution** follows a **power law**, at least asymptotically (漸進線地)

\[P(k) = Ck^{-\alpha} \implies P(k) \sim k^{-\alpha} \]

- Typically \(2 < \alpha < 3\), occasionally lie outside bounds

- Q: How to model or generate the scale-free networks?
Poisson vs. Scale-free network

Poisson network
(Erdos-Renyi random graph)

Degree distribution is Poisson

Scale-free network
(power-law network)

Degree distribution is Power-law

2009/9/29 SNA09, Modeling, Prof. Sd Lin
Should the number of nodes be fixed?

• Random graph models such as ER assume the fixed number of nodes, and the probability that two nodes are connected is independent of the nodes’ degree.

• However, most real-world networks grow by continuously adding new nodes
 – E.g., WWW, citations

• Can we model such network growing?
Model for Exponential Network

• Assuming initially, there are two connected nodes. Then with each increment of time, a new vertex is added into the network and connects to a randomly chosen old vertex (without preference).
 – Therefore at time t, there shall be t+1 vertices and t edges. The total degree is 2t
• Assume the probability $p(k,s,t)$ stands for the probability that a vertex s has degree k at time t. Then
 $$p(k,s,t+1) = \frac{1}{t+1} p(k-1,s,t) + \left(1 - \frac{1}{t+1}\right) p(k,s,t) \quad \text{...eq1}$$
• The total degree distribution of the entire network is
 $$p(k,t) = \sum_s p(k,s,t)/(t+1)$$
• Apply \sum_s to both sides of eq1, we get
 $$(t+2)p(k,t+1) = p(k-1,t) + tp(k,t)$$
• When $t \to \infty$, the above equation becomes $2p(k,t) = p(k-1,t)$, which implies $p(k,t)$ is of the form $2^{-k} \quad \Rightarrow \quad \text{Exponential Network}$
• Unfortunately, real-world networks follow power law.
Barabasi-Albert Model (1/2) [1999]

• Idea: Real-world networks follow preferential attachment
 – New nodes tend to connect themselves to a given node that has higher degree.
 – A newly created website is more likely to be linked to a website that is linked by many other people — popularity is attractive.

• Following such idea, Barabasi & Albert proposes $p_{m,t}$ as the probability an existing node m is connected to a newly added node at time t, and set $p_{m,t}=k/2t$, where k is the degree of m at time t.
Barabasi-Albert Model (2/2)[1999]

- Similar to exponential network model
 \[p(k,s,t+1) = \frac{k-1}{2t} p(k-1,s,t) + \left(1 - \frac{k}{2t}\right) p(k,s,t) \ldots eq2 \]

- Similar to the exponential network model, since
 \[p(k,t) = \sum_s p(k,s,t)/(t+1) \]
 we can sum over \(s \) on both sides of eq2, and let \(t \to \infty \), to obtain
 \[p(k,t)+1/2[k*p(k,t)-(k-1)*p(k-1,t)]=0 \]

- The solution is of the form \(k^{-3} \to \) power law
A more General Barabasi-Albert Model

1. **Start** with a small number \((m_0)\) of fully connected nodes

2. Add one new node with \(m (\leq m_0)\) edges
 - Link the new node to \(m\) different nodes already present in the system
 - Based on the degree \(k_i\) of node \(I\)

3. After \(t\) time steps
 - There are \(N=t+m_0\) nodes,
 - \(mt + C_{m_0}^2\) edges
 - total degree = \(2mt + 2C_{m_0}^2\)
Generating Barabasi-Albert Network

• Start with a set of $m_0=3$ fully connected nodes

• Add a new node 4, it has $m=2$ edges
 – Prob(selecting any node)=1/3
 – Suppose they are node 2 and node 3

• Add a new node 5, it has $m=2$ edges
 – Prob(selecting node 1)=2/10=1/5
 – Prob(selecting node 2)=3/10
 – Prob(selecting node 3)=3/10
 – Prob/selecting node 4)=2/10=1/5

• Add a new node 6...
 – 2/14, 3/14, 4/14, 3/14, 2/14
Continuum Theory (1/4)

- Proving the general Barabasi-Albert model follows k^{-3}
- Assume the degree distribution k_i is a continuous variable
 - The rate at which k_i change is expected to be proportional to
 \[
 \Pi(k_i) = \frac{k_i}{\sum_j k_j}
 \]
 \[
 \frac{\partial k_i}{\partial t} = m\Pi(k_i) = m \frac{k_i}{2m(t-1)+C_2^{m_0}} \approx \frac{k_i}{2t}
 \]
Continuum Theory (2/4)

\[\frac{\partial k_i}{\partial t} = \frac{k_i}{2t} \]

• Solve with Initial condition each node i at its introduction has \(k_i(t_i) = m \)

\[k_i(t) = m \left(\frac{t}{t_i} \right)^{0.5} \]

The later a node is added, the smaller its degree is.

• The probability a node has a degree \(k_i(t) \) smaller than \(k \) is

\[P(k_i(t) < k) = P \left(t_i > \frac{m^2 t}{k^2} \right) \]
Continuum Theory (3/4)

\[P(k_i(t) < k) = P \left(t_i > \frac{m^2 t}{k^2} \right) \]

- Assume we add the nodes at equal time intervals, \(t_i \) has a constant probability density

\[P(t_i) = \frac{1}{m_0 + t} \]

\[P(k_i(t) < k) = P \left(t_i > \frac{m^2 t}{k^2} \right) \]

\[= 1 - P \left(t_i \leq \frac{m^2 t}{k^2} \right) = 1 - \frac{m^2 t}{k^2(t + m_0)} \]
Theoretical Approach

Continuum Theory (4/4)

• Finally, the degree distribution $P(k)$ can be obtained using

$$P(k) = \frac{\partial P(k_i(t) < k)}{\partial k} = \frac{2m^2t}{m_0 + t} \frac{1}{k^3}$$

$$P(k) \sim 2m^2k^{-3} \quad \text{c.f. } P(k) \sim k^{-\alpha}$$

Independent of m, $N=m_0 + t$, i.e., independent of continuous growth in agreement with the numerical simulations

\[\alpha = 3 \]

\[\Rightarrow \quad \text{Time-independent degree distribution} \]
See $P(k)$

Fix: N, Vary: m_0, m

- $N=m_0+t=300,000$
 - $m_0=m=1$
 - $m_0=m=3$
 - $m_0=m=5$
 - $m_0=m=7$
- Slope (dashed line) = 2.9
 - i.e., $\alpha=2.9$
See $P(k)$

Vary: N, Fix: m_0, m

- $m_0=m=5$
 - $N=100,000$
 - $N=150,000$
 - $N=200,000$
- Slope (dashed line) = 2.9
 - i.e., $\alpha = 2.9$
Average Path length of Scale-free Networks

• **Average Path length** \((L) \)
 - If \(\alpha > 3 \) \(\Rightarrow L \approx O(\log(N)/\log(z_2/z_1)) \)
 - If \(2 < \alpha < 3 \) \(\Rightarrow L \approx O(\log\log N) \), given the average degree is strictly greater than 1 and the maximum degree is sufficiently large.

Clustering Coefficient of Scale-free Networks

- Using $CC = \frac{(z/n) \cdot (z_2/z_1^2)^2}{z_2^2}$, it is possible to obtain $CC \approx N^{(7-3\alpha)/(\alpha-1)}$
 - If $\alpha>7/3$, then CC tends to become 0 with large N
 - If $\alpha=7/3$, then $CC =1$
 - If $\alpha<7/3$, then CC grows with N

Overview: Properties of BA-Model

• Power-law degree distribution
• The network is connected
 – Every node is born with a link (m=1) or several links (m>1)
• Small network diameter (at most \(O(\log N)\))
• Usually small clustering coefficient (large enough \(\alpha\))
• The older get richer
 – Preferential attachment
 – Nodes accumulate links as time goes on
Outline

• Random Graph
 – Erdos-Renyi Model
 – Configuration Model

• Scale-free Network
 – Power-law distribution
 – Barabasi-Albert Model

• Small-world Network
 – Watts-Strogatz Model

• Comparison of Network Models
Small-world Network

For more details, please refer to:

Small-world Phenomenon

- “Six Degree of Separation”
- **Milgram’s Experiment** [1969]
 - 64/296 (25%) reach
 - Average path length = 6
Observation in Real-world Cases (1/2)

<table>
<thead>
<tr>
<th>Network</th>
<th>Size</th>
<th>$\langle k \rangle$</th>
<th>$\ell \sim \ell_{\text{rand}}$</th>
<th>$C > C_{\text{rand}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWW, site level, undir.</td>
<td>153,127</td>
<td>35.21</td>
<td>3.1 - 3.35</td>
<td>0.1078 0.00023</td>
</tr>
<tr>
<td>Internet, domain level</td>
<td>3015 - 6209</td>
<td>3.52 - 4.11</td>
<td>3.7 - 3.76 6.36 - 6.18</td>
<td>0.18 - 0.3 0.001</td>
</tr>
<tr>
<td>Movie actors</td>
<td>225, 226</td>
<td>61</td>
<td>3.65 2.99</td>
<td>0.79 0.00027</td>
</tr>
<tr>
<td>LANL coauthorship</td>
<td>52, 909</td>
<td>9.7</td>
<td>5.9 4.79</td>
<td>0.43 1.8 × 10^{-4}</td>
</tr>
<tr>
<td>MEDLINE coauthorship</td>
<td>1,520, 251</td>
<td>18.1</td>
<td>4.6 4.91</td>
<td>0.066 1.1 × 10^{-5}</td>
</tr>
<tr>
<td>SPIRES coauthorship</td>
<td>56, 627</td>
<td>173</td>
<td>4.0 2.12</td>
<td>0.726 0.003</td>
</tr>
<tr>
<td>NCSTRL coauthorship</td>
<td>11,994</td>
<td>3.59</td>
<td>9.7 7.34</td>
<td>0.496 3 × 10^{-4}</td>
</tr>
<tr>
<td>Math coauthorship</td>
<td>70, 975</td>
<td>3.9</td>
<td>9.5 8.2</td>
<td>0.59 5.4 × 10^{-5}</td>
</tr>
<tr>
<td>Neurosci. coauthorship</td>
<td>209, 293</td>
<td>11.5</td>
<td>6 5.01</td>
<td>0.76 5.5 × 10^{-5}</td>
</tr>
<tr>
<td>E. coli, substrate graph</td>
<td>282</td>
<td>7.35</td>
<td>2.9 3.04</td>
<td>0.32 0.026</td>
</tr>
<tr>
<td>E. coli, reaction graph</td>
<td>315</td>
<td>28.3</td>
<td>2.62 1.98</td>
<td>0.59 0.09</td>
</tr>
<tr>
<td>Ythan estuary food web</td>
<td>134</td>
<td>8.7</td>
<td>2.43 2.26</td>
<td>0.22 0.06</td>
</tr>
<tr>
<td>Silwood park food web</td>
<td>154</td>
<td>4.75</td>
<td>3.40 3.23</td>
<td>0.15 0.03</td>
</tr>
<tr>
<td>Words, cooccurrence</td>
<td>460,902</td>
<td>70.13</td>
<td>2.67 3.03</td>
<td>0.437 0.0001</td>
</tr>
<tr>
<td>Words, synonyms</td>
<td>22,311</td>
<td>13.48</td>
<td>4.5 3.84</td>
<td>0.7 0.0006</td>
</tr>
<tr>
<td>Power grid</td>
<td>4,941</td>
<td>2.67</td>
<td>18.7 12.4</td>
<td>0.08 0.005</td>
</tr>
<tr>
<td>C. Elegans</td>
<td>282</td>
<td>14</td>
<td>2.65 2.25</td>
<td>0.28 0.05</td>
</tr>
</tbody>
</table>

2009/9/29 SNA09, Modelling Prof. Sd Lin
Observation in Real-world Cases (2/2)

\[\ell_{\text{rand}} \sim \frac{\ln(N)}{\ln(\langle k \rangle)} \]

\[C_{\text{rand}} = p = \frac{\langle k \rangle}{N} \]

- **Average Path Length**
 \[\ell_{\text{rand}} \sim \ell_{\text{real-world}} \]

- **Clustering Coefficient**
 \[C_{\text{real-world}} \text{ appears to be independent of the network size} \]

Characteristic of **Ring Lattice**!
• Ring lattice with \(N \) nodes
 – Each has \(k \) neighbors
 – \(|E| = kN/2\)

• Longest Path Length: \(N/K \)
• Average Path Length (\(l \)): \(N/2K \)

• Clustering Coefficient

\[
C = \frac{C_2^k - (1 + 2 + ... k/2)}{C_2^k} = \frac{3(k-2)}{4(k-1)} \approx \frac{3}{4}
\]

Increase much faster than random and real-world networks

Independent of network size

2009/9/29
Watts-Strogatz Model [1998]

Summary of observations

• One extreme: **Random graph**
 – Low avg path length, **low** clustering coefficient

• Other extreme: “**Regular**” network (**Lattice**)
 – **High** avg path length, **high** clustering coefficient

• Real-world case: **Small-world Network**
 – **Low** avg path length, **high** clustering coefficient
Watts-Strogatz Model (cont.)

• **Interpolate** between lattice and random graph!

1. **Start with order**
 - Start with a ring lattice with \(N \) nodes (\(K \) neighbors)
 - To ensure sparse and connected network
 - \(N \gg K \gg \ln(N) \gg 1 \)

2. **Random Rewiring** → **shortcuts**
 - Randomly rewire each edge with probability \(p \)
 - Disallow self-loop and duplicate edges
 - Introduce \(pNK/2 \) long-range edges
Watts-Strogatz Model (cont.)

Regular

Small-world

Random

$p = 0$
Increasing randomness
$p = 1$
Basic Idea of WS Model

1. Most people are friends with their immediate neighbors (**neighbored edges**)
 – Neighbors on the same street, colleagues, etc.

2. Everyone has one or two friends who are far away (**long-range edges by rewiring**)
 – People in other countries, old acquaintances
 – Such tie plays the role of “short cut”, and is critical to small world phenomenon.
Characteristic $l(p)$ and $C(p)$ for WS Model

Coexistence of small l and large C

$\begin{align*}
l(0) &\sim N/2K \\
C(0) &\sim 3/4
\end{align*}$

$\begin{align*}
l(1) &\sim \log(N)/\log(K) \\
C(1) &\sim K/N
\end{align*}$
Average Path Length for WS Model

- \(L = \frac{N}{2K} \) when \(p=0 \), and \(L \) does not begin to decrease significantly until \(p \geq \frac{2}{NK} \), which implies more than one shortcut occurs.

- The above implies the transition \(p \) depends on \(N \). That is, there exist a crossover size \(N^* \) such that if \(N < N^* \), \(L \propto N \); and if \(N > N^* \), \(L \propto \ln(N) \)

- It has been shown that \(L(N,p) \approx \frac{1}{K} N^{1/d} f(pKN) \), where \(d \) is the dimension of the lattice, \(f(x) = \text{const} \) if \(x \ll 1 \), and \(f(u) = \ln(u)/u \) if \(u \gg 1 \)

Clustering Coefficient & Degree Distribution for WS Model

- $C(p=0) = \frac{3(k - 2)}{4(k - 1)}$, $C(p=1) = k/N$
- $C(p) \approx C(p=0) \cdot (1-p)^3$, because we need to maintain three sides of the triangle.
- The degree k_i of vertex i can be written as $k_i = K/2 + c_1 + c_2$, where $K/2$ is the original edge of the unrewired end (since only single end of every edge is rewired), c_1 represents edges have been left in place (with prob=1-p) and c_2 represents the edges been rewired towards i, each with probability 1/N.
- The probability distribution of c_1 and c_2 are:
 - $P(c_1) = C_{c_1}^{K/2} (1-p)^{c_1} p^{K/2-c_1}$
 - $P(c_2) = C_{c_2}^{pNK/2} (1/N)^{c_2} (1-1/N) p^{pNK/2-c_2}$
 - $P(k) = \sum_{n=0}^{\min(K/2,K/2)} C_n^{K/2} (1-p)^n p^{K/2-n} \frac{(pK/2)^{(k-K/2-n)}}{(k-K/2-n)!} e^{-pK/2}$
Degree Distribution of Small-world Network

- Only one end of each edge is rewired
- Each node will have at least $K/2$ edges
- For $K>2$, no isolated nodes

$P(k)$

- Random graph (exact) with average degree

2009/9/29 SNA09, Modeling, Prof. Sd Lin
Giant Component Size of Power-law Graphs

\[P(k) = Ck^{-\alpha} \Rightarrow \log(P(k)) = c - \alpha \log(k) \]

- The evolution of power-law graph using configuration model depends on \(\alpha \)
 - \(\alpha > 3.48 \): no giant component
 - \(\alpha < 3.48 \): there is almost surely a unique giant component
 - \(2 < \alpha < 3.48 \): the second largest component is \(O(\log n) \), for any \(2 \leq k < O(\log n) \), there is almost surely a component of size \(k \)
 - \(\alpha \sim 2 \): the second largest component is \(O(\log n/\log\log n) \)
 - \(1 < \alpha < 2 \): the second largest component is \(O(1) \), and the graph is almost surely NOT connected
 - \(0 < \alpha < 1 \): the graph is almost surely connected

The number of connected components for each possible component sizes for a call graph of a typical day

- The giant component contains nearly all of the nodes
- The maximum size of the next largest component is indeed exponentially smaller than the size of the giant component
- Interestingly, the distribution of the number of components of size smaller than the giant component is nearly log-log linear

The data was compiled by AT&T lab from raw phone call records, and the degree of the graph follows power law

The corresponding power-law distribution:
The number of connected components vs. component size for a collaboration network of power law

- A collaboration power-law graph with $\alpha=2.97$
- 337000 nodes (authors), 496000 edges (joint publication)
Outline

• **Random Graph**
 – Erdos-Renyi Model
 – Configuration Model

• **Scale-free Network**
 – Power-law distribution
 – Barabasi-Albert Model

• **Small-world Network**
 – Watts-Strogatz Model

• **Comparison of Network Models**
Component size distribution vs. Different degree distributions

• Let π_s be the probability of a randomly chosen node belonging to a component of size s

• For the **Poisson** Random Graph

\[p_k = e^{-c} \frac{c^k}{k!} \quad \pi_s = \frac{e^{-cs}(cs)^{s-1}}{s!} \]

• For the Graphs with **Exponential** distribution

\[p_k = Ce^{-\lambda k} \]

\[\pi_s \sim se^{-\mu s}, \text{ where } \mu = 2 \ln \left[\frac{3}{2} (1 - e^{-\lambda}) \right] - \lambda \]

• For the **Power-law** Graphs

\[p_k \propto k^{-\alpha} \]

\[\pi_s = [1 - \ln 2]^{-1} \frac{(3s - 5)!}{(s - 1)! (2s - 2)!} s^{2 - 3s} \]

Component size distribution vs. Different degree distributions

- Poisson: $c=1.5$, Exponential: $\lambda=1$, Power-law: $\alpha=2.5$
- Each point is an average over 5000 networks of 10^6 nodes
Comparison of Network Models

<table>
<thead>
<tr>
<th></th>
<th>ER Model</th>
<th>Regular Lattice</th>
<th>WS Model</th>
<th>BA Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Path Length</td>
<td>Short</td>
<td>Long</td>
<td>Short</td>
<td>Short</td>
</tr>
<tr>
<td></td>
<td>$l_{rand} \sim \log(N)/\log(z)$</td>
<td>$l_{lattice} \sim N/2K$</td>
<td>$l_{ws} \sim \log(N)$</td>
<td>$l_{sf} \sim \log(N)$</td>
</tr>
<tr>
<td>Clustering Coefficient</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>$C_{rand} = z/n$</td>
<td>$C_{lattice} = 3/4$</td>
<td>$C_{ws}(p) = C(0)(1-p)^3$ independent of N</td>
<td>$C_{sf} = N^{-0.75}$</td>
</tr>
<tr>
<td>Long Tail</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>$P(k) = z^k e^{-z}/k!$</td>
<td>$P(k) = k$</td>
<td>similar to random graph</td>
<td>$P(k) = Ck^{-\alpha}$</td>
</tr>
</tbody>
</table>

2009/9/29